on the stability of the permanent rotations OF AN ASYMMETRIC HEAVY RIGID BODY*

D.V. ANDREEV

Abstract

The permanentrotations around the vertical of an asymmetric heavy rigid body with a fixed point are examined. The stability of the rotations are investigated on the basis of stability theorems for a Hamiltonian system in the nonresonance case $/ 1,2$, and under third- and fourth-order resonances /3/. It is shown that in the nonresonance case the stability of all, except, perhaps, a finite number, permanent rotations is determined by the first approximation. Stability and instability conditions for resonance rotations are found. Stability of rotations, in the general case, was studied in $/ 4-7 /$, in the case of rotations around the principal axes, in $/ 8-10 /$, and in the case of rotations around axes lying in the principal inertia plane, in /11/.

1. We consider a heavy body with a fixed point O and with principal moments of inertia $A>B>C$ for this point. For simplicity we set the product of the body's weight by the distance from point O to the center of mass equal to unity. Let $O x_{1} y_{1} z_{1}$ be a fixed coordinate system with the axis $O z_{1}$ directed vertically upwards and let $O x_{0} y_{0} z_{0}$ be a coordinate system connected with the body's principal axes of inertia for the point O If the body executes a permanent rotation around the vertical, then the relative position of these systems at the initial instant $t=0$ is specified by a table of direction cosines $\left\{n_{i j}\right\}$, where $n_{31}=\alpha, n_{32}=$ $\beta, n_{33}=\gamma$ are constant through the whole rotation time. Together with system $O x_{0} y_{0} z_{0}$ we introduce another system $O x_{1}{ }^{\prime} y_{1}{ }^{\prime} z_{1}^{\prime}$ rigidly attached to the body, where $O z_{1}{ }^{\prime}$ is the permanent axis in the body. At any instant the axes of this system are obtained from those of $O x_{1} y_{1} z_{1}$ by successive turns through the angles: $\omega t+\psi$ around the z_{1}-axis, φ around the new position $x_{1}^{\prime \prime}$ of the x_{1}-axis, θ around the y_{1}^{\prime}-axis. Under a permanent rotation of the body with angular velocity ω the axis $O z_{1}$ coincides with the permanent axis $O z_{1}{ }^{\prime}$. In this case the angles ψ, φ and θ equal zero and, consequently, are the Lagrange coordinates of the body in perturbed motion. We shall investigate the stability of the permanent axis, i.e., the stability with respect to the coordinates φ and θ; the coordinate $\omega t+\psi$ is cyclic.

We introduce the variables $u_{1}=\sin \varphi, u_{2}=\cos \varphi \sin \theta$, the dimensionless time $\quad \Gamma=\omega t$ and the generalized momenta v_{1}, v_{2}. We construct the Hamiltonian H^{\prime} of the variables $u_{1}, u_{2}, v_{1}, v_{2}$. The function H^{\prime} has a stationary point $u_{1}=0, u_{2}=0, v_{1}=a_{23}, v_{2}=a_{13}$. Here and later $a_{i j}=$ $A n_{i 1} n_{j 1}+B n_{i 2} \cdot n_{j 2}+C n_{i 3} n_{j 3}, \quad i, j=1,2,3$ are the components of the body's inertia tensor. We introduce the perturbations $u_{3}=v_{1}-a_{23}, u_{4}=v_{2}-a_{13}$ of the momenta and we consider the Hamiltonian $H=H^{\prime}-H_{0}, H_{0}=3 / 2 a_{33}+\lambda$ of the canonic variables $u_{i}, i=1, \ldots, 4$. We obtain the following expansion of H in a series in powers of u_{i} :

$$
\begin{align*}
H & =H_{2}+H_{3}+H_{4}+\ldots \tag{1.1}\\
H_{2} & =\frac{1}{2} \sum_{i, j=1}^{4} r_{i,} u_{i} u_{j}, \quad H_{3}=\sum_{i+j+k+l=3} h_{i j k l} u_{3}{ }^{i} u_{4}{ }^{j} u_{1}{ }^{k} u_{2}{ }^{l} \\
H_{4} & =\sum_{i+j+k+l=1} h_{i j k l} u_{3}{ }^{i} u_{4}{ }^{j} u_{1}{ }^{k} u_{2}^{l}
\end{align*}
$$

and the following nonzero $h_{i j k l}$ and $r_{i j}$:

$$
\begin{gathered}
r_{11}=a_{23}{ }^{2} b_{33}+\lambda, \quad r_{12}=a_{23}\left(a_{33} b_{13}-a_{13} b_{33}\right), \quad r_{22}=a_{13}\left(a_{33} b_{13}-\right. \\
\left.a_{13} b_{33}\right)+a_{33}\left(a_{33} b_{11}-a_{13} b_{13}\right)+2 a_{33}+\lambda, \quad r_{13}=-a_{23} b_{23}- \\
1, \quad r_{14}=-a_{23} b_{13}, \quad r_{23}=a_{13} b_{23}-a_{33} b_{12}, \quad r_{24}=1-a_{33} b_{11}+ \\
a_{13} b_{13}, \quad r_{33}=b_{22}, \quad r_{34}=b_{12}, \quad r_{44}=b_{11}, \quad h_{2010}=h_{1101}=b_{23},
\end{gathered}
$$

[^0]\[

$$
\begin{aligned}
& h_{0201}=-h_{1110}=-b_{13}, \quad h_{1002}=-h_{0111}=a_{13} b_{33}-a_{33} b_{13}, \\
& h_{1020}=a_{23} b_{33}, a_{33} b_{23}, h_{1011}=-a_{23} b_{33}, h_{0120}=a_{33} b_{13}, h_{0030}= \\
& a_{23}\left(-a_{33} b_{33}+1 / 2\right), \quad h_{0012}=1 / 2 a_{23}, h_{0003}=-1 / 2 a_{13}, h_{0021}= \\
& a_{33} h_{1002}-1 /{ }_{20} a_{33}, h_{1120}=h_{1102}=-2 b_{12}, h_{0130}=h_{0112}=a_{23} b_{13}, \\
& h_{1021}=-a_{13} b_{23}-a_{33} b_{12}, h_{1003}=a_{33} b_{12}-a_{13} b_{23}, h_{2020}=b_{33}-b_{22}, \\
& h_{2002}=-b_{22}, \quad h_{0220}=-b_{11}, \quad h_{0202}=b_{38}-b_{11}, \quad h_{1111}=-2 b_{33}, \\
& h_{1030}=1+a_{23} b_{23}-2 a_{33} b_{13}, h_{1012}=1+a_{23} b_{23}, \quad h_{0121}=-1- \\
& a_{13} b_{13}-2 a_{33} b_{33}, h_{0103}=a_{33} b_{11}-a_{13} b_{13}-1, h_{0040}=a_{23} b_{33}+ \\
& 1 / 4\left(\lambda-a_{33}\right), h_{0031}=2 a_{33} a_{23} b_{13}, h_{0022}=2 a_{33} h_{0103}+1 / 2\left(\lambda-a_{33}\right), \\
& h_{0004}=1 / 4\left(\lambda-a_{33}\right)
\end{aligned}
$$
\]

Here

$$
\left.b_{i j}=(A B C)^{-2}\left(B C n_{i 1} n_{j 1}\right)+A C n_{i 2} n_{j 2}+A B n_{i 3} n_{j 3}\right) ; i, j=1,2,3
$$

while the parameter λ is defined /5/ by the relations

$$
\begin{equation*}
\lambda=A-\alpha_{0} / \alpha=B-\beta_{0} / \beta=C-\gamma_{0} / \gamma \tag{1.2}
\end{equation*}
$$

where $\alpha_{0}, \beta_{0}, \gamma_{0}$ are the direction cosines of the radius vector of the body's center of mass in the system $O x_{0} y_{0} z_{0}$.
2. We consider the linearized system of equations of perturbed motion of the body, determined by Hamiltonian H_{2}. It has the operational matrix

$$
\Delta(D)=\left\|r_{i j}\right\|+\mathbf{J} D, \quad \mathbf{J}=\left\|\begin{array}{rr}
\mathbf{0} & \mathbf{E} \tag{2.1}\\
-\mathbf{E} & \mathbf{0}
\end{array}\right\|
$$

where E is the second-order unit matrix, and the characteristic equation

$$
\begin{align*}
& \sigma^{4}+g_{1} \sigma^{2}+g_{2}=0 \tag{2.2}\\
& g_{1}=r_{11} r_{33}-r_{13}{ }^{2}+r_{22} r_{44}-r_{24}{ }^{2}+2\left(r_{12} r_{34}-r_{23} r_{14}\right) \\
& g_{2}=\operatorname{det}\left\|r_{i j}\right\|
\end{align*}
$$

We shall reckon as fulfilled the necessary stability conditions /4/

$$
\begin{equation*}
g_{1}>0, \quad g_{2}>0, \quad g_{3}=g_{1}^{2}-4 g_{2}>0 \tag{2.3}
\end{equation*}
$$

and consider the case when form H_{2} is indefinite. In that case Hamiltonian H_{2} is reduced to the normal form

$$
\begin{equation*}
H_{2}^{\prime}=i / 2\left(\omega_{1} p_{1} q_{1}-\omega_{2} p_{2} q_{2}\right) \tag{2.4}
\end{equation*}
$$

where $\omega_{1}>\omega_{2}$ are the moduli of the roots of Eq. (2.2) and $p_{1}, p_{2}, q_{1}, q_{2}$ are the new canonic variables.

Let $F_{k 1}(D)(k=1, \ldots, 4)$ be the cofactor of the k-th algebraic element in the first row of matrix (2.1). We introduce the notation

$$
\begin{aligned}
& f_{k 1}=1 / 2 F_{k 1}\left(i \omega_{1}\right)\left[\omega_{1}\left(\omega_{2}^{2}-\omega_{1}^{2}\right) F_{11}\left(i \omega_{1}\right)\right]^{-1 / 2} \\
& f_{k 2}=1 / 2 F_{k 1}\left(i \omega_{2}\right)\left[\omega_{2}\left(\omega_{2}^{2}-\omega_{1}^{2}\right) F_{11}\left(i \omega_{2}\right)\right]^{-1 / 2} \\
& (k=1, \ldots, 4 ; i=\sqrt{-1})
\end{aligned}
$$

The canonic transformation / $12 /$

$$
u_{i}=-f_{i 1} p_{1}+f_{i 2} p_{2}-\bar{f}_{i_{1}} q_{1}+\bar{f}_{i 2} q_{2} \quad(i=1, \ldots, 4)
$$

normalizing H_{2}, where $\bar{f}_{k l}$ is the function complex-conjugate to $f_{k l}$, transforms H_{3} and H_{4} as well. In the new variables expansion (1.1) becomes

$$
\begin{equation*}
H=H_{2}{ }^{\prime} \div \sum_{i+j+k+l=3} K_{i j_{k} l} p_{1}{ }^{i} p_{2}{ }^{j} q_{1}{ }^{k} q_{2}{ }^{l}+\sum_{i+j+k+l=1} L_{i j k l} p_{1}{ }^{i} p_{2}{ }^{j} q_{1}{ }^{k} q_{2}{ }^{2}+\ldots \tag{2.5}
\end{equation*}
$$

Here

$$
K_{3000}=-\sum_{i+j+k+l=3} h_{i j k k} f_{11}{ }^{k} f_{21}{ }^{l} f_{31}{ }^{i} f_{41}{ }^{j}
$$

while the expressions for the coefficients $K_{0300}, K_{0030}, K_{0003}$ are obtained from K_{3000} by the replacements of the sets

$$
\begin{align*}
& \left(f_{k_{1},}, f_{k_{2},}, f_{k 1}, f_{k 2}\right) \text { by }\left(-f_{k 2}-f_{k_{1}},-f_{k 2},-f_{k i}\right) \tag{2.6}\\
& \left(f_{k_{1}}, f_{k_{2}}, f_{k 1}, f_{k 2}\right) \text { by }\left(f_{k 1}, f_{k 2}, f_{11}, f_{k 2}\right) \\
& \left(f_{k 1}, f_{k 2}, f_{k 1}, f_{k 2}\right) \text { by }\left(-f_{k 2},-f_{k 1},-f_{k 2},-f_{k 1}\right)
\end{align*}
$$

Further

$$
K_{2100}=\sum_{v_{t}=1,2,3,4} h_{k_{k} k_{1} k_{1} k_{2}}\left(f_{v_{1} 1} f_{v_{1} 1} f_{v_{2} 2}+f_{w 1} f_{v_{2} 2} f_{v_{1} 1}+f_{v_{2} 2} f_{v_{2}} f_{v_{1} 1}\right)
$$

(here and henceforth k_{i} is the number of indices v_{l} taking value i. The expressions for the coefficients $K_{1200}, K_{0021}, K_{0012}$ are obtained from K_{2100} by the replacements (2.6); the expression for K_{2001} is obtained simply by replacing $f_{k 2}$ by $f_{k 2}$. The coefficients K_{0210}, K_{0120}, K_{1002} are obtained by replacements (2.6) from the expression for K_{2001}. Having next replaced $f_{k 2}$ by $-f_{k 1}$, we obtain K_{2010} and K_{0120} from the coefficients K_{2001} and K_{1002}, respectively, while having replaces $f_{k 1}$ by $-f_{k 2}$ in the expressions for K_{0120} and K_{0210}, we obtain K_{0102} and K_{0201}. Finally,

$$
K_{1110}=\sum_{v_{l}=1,2,3,4} h_{k_{2}, k_{k} k_{k},} \sum f_{v_{1}} f_{v_{2} 1} f_{v_{1} 1}
$$

where the inner summation is taken over all permutations of indices v_{1}, v_{2}, v_{3}. The coefficients $K_{1101}, K_{1011}, K_{0111}$ are obtained by replacements (2.6) from K_{1110}.

For the normalization of Hamiltonian (2.5) in the nonresonance case we need as well L_{2020}, L_{0202}, L_{1111}. We have

$$
L_{2020}=\frac{1}{2} \sum_{v_{l}=1,2,3,4} h_{k_{2} k_{k} k_{k} k_{2}} \sum \bar{f}_{v_{1} 1} \bar{v}_{v_{2} 1} f_{v_{1} 1} f_{v_{0} 1}
$$

where the inner summation is taken over all distinct permutations of the conjugacy symbols over the functions $f_{k l}$. The coefficient L_{0202} is obtained from L_{2020} by replacing $f_{k 1}$ by $f_{k 2}$ and $f_{k 1}$ by $f_{k 2}$. Finally

$$
L_{1111}=\sum_{v_{t}=1,2,3,4} h_{k_{2} k_{i k_{1}} k_{2}} \sum f_{v_{1} 1} \bar{f}_{v_{2} 1} \bar{f}_{v_{2}} / v_{v_{4} 2}
$$

where the inner summation is taken over all possible permuations of the indices $v_{1}, v_{2}, v_{3}, v_{4}$.
3. If neither one of the conditions

$$
\begin{equation*}
\omega_{1}=2 \omega_{2}, \quad \omega_{1}=3 \omega_{2} \tag{3.1}
\end{equation*}
$$

is fulfilled, Hamiltonian (2.5) can be reduced to the form

$$
H-H_{2}^{\prime}+G_{11} p_{1}^{2} q_{1}^{2}+2 G_{12} p_{1} p_{2} q_{1} q_{2}+G_{22} p_{2}^{2} q_{2}^{2}+\ldots
$$

According to /13/

$$
\begin{aligned}
& G_{11}=L_{2020}+\omega_{1}^{-1}\left(K_{3000} K_{0300}+3 K_{2010} K_{1020}\right)+3 \omega_{2}^{-1} K_{1110} K_{1011}+ \\
& \quad\left(4 \omega_{1}+3 \omega_{2}\right)\left(2 \omega_{1}+\omega_{2}\right)^{-2} K_{2100} K_{0012}+ \\
& \left(3 \omega_{1}-4 \omega_{2}\right)\left(2 \omega_{1}-\omega_{2}\right)^{-2} K_{0120} K_{2010} \\
& G_{12}=L_{1111}+2 \omega_{1}\left(2 \omega_{1}+\omega_{2}\right)^{-2} K_{2100} K_{0091}+2 \omega_{2}\left(2 \omega_{2}+\omega_{1}\right)^{-2} \times \\
& K_{1200} K_{0012}+2 \omega_{1}\left(2 \omega_{1}-\omega_{2}\right)^{-2} K_{2001} K_{0120}+2 \omega_{2}\left(2 \omega_{2}-\right. \\
& \left.\omega_{1}\right)^{-2} K_{0210} K_{1002}+2 \omega_{1}{ }^{-1}\left(K_{2010} K_{0111}+K_{1101} K_{1020}\right)+ \\
& 2 \omega_{2}^{-1}\left(K_{1110} K_{0102}+K_{0201} K_{1011}\right)
\end{aligned}
$$

G_{22} is obtained from G_{11} as follows: ω_{1} changes places with ω_{2}, in the multi-indices the first indices permute with the second and the third with the fourth. On the staude cone /14/ and on the circle of centers of gravity /4/ we try to pick out axes for which

$$
\begin{equation*}
W=G_{11} \omega_{1}{ }^{2}+2 G_{12} \omega_{1} \omega_{2}+G_{22} \omega_{2}{ }^{2}=0 \tag{3.2}
\end{equation*}
$$

According to /1-3/, rotations around axes lying in the gyroscopic stability domains /4,6,7/ will be stable if neither one of the conditions (3.1) and (3.2) is fulfilled for them. It is well known /5-7/ that with each "allowable" axis on the Stäude cone we can associate one-toone a value of the real parameter λ defined by relations (1.2). It can be shown that the circle of centers of gravity, as also the Stäude cone, can be specified by parameter λ if we reckon constant not $\alpha_{0}, \beta_{0}, \gamma_{0}$, but α, β, γ.

We return to condition (3.2). This is an irrational equation in λ. By getting rid of the radicals it reduces to an algebraic one. When the α, β, γ are fixed, its degree equals 176, while for constants $\alpha_{0}, \beta_{0}, \gamma_{0}$, it does not exceed 28,512 . Therefore, the number of axes for which the Arnol'd-Moser determinant $W(\lambda)$ vanishes on the whole Stäude cone or on the circle of centers of gravity, and, hence, in the gyroscopic stability domains, is a finite number.
4. We pass on to the resonance case and we consider rotations for which one of conditions (3.1) is fulfilled. We express the squares $\omega_{1}{ }^{2}, \omega_{2}{ }^{2}$ of the frequencies in terms of the coefficients of Eq. (2.2) and we substitute these expressions into (3.1). Equations (3.1) take the form

$$
\begin{equation*}
g_{3}+g_{1} \sqrt{g_{3}}=6 g_{2}, \quad g_{3}+g_{1} \sqrt{g_{3}}=16 g_{2} \tag{4.1}
\end{equation*}
$$

It can be shown that each of the Eqs. (4.1) has exactly one root in the gyroscopic stability domains for fixed α, β, γ, while for constants $\alpha_{0}, \beta_{0}, \gamma_{0}$, no more than 20 roots. Consequently, to each of the third- and fourth-order resonance relations there corresponds one point each on the circle of centers of gravity and no more than 20 axes on the Stäude cone. In the case of third-order resonance the Hamiltonian (2.5) is reduced to the form /13/

$$
\begin{align*}
& H=H_{2}{ }^{\prime}+K_{1002} p_{1} q_{2}{ }^{2}+\bar{K}_{1002} p_{2}{ }^{2} q_{1}+ \tag{4.2}\\
& G_{11} p_{1}{ }^{2} q_{1}{ }^{2}+2 G_{12}{ }^{\prime} p_{1} p_{2} q_{1} g_{2}+G_{22}{ }^{\prime} p_{2}{ }^{2} q_{2}{ }^{2}+\ldots \\
& K_{1002}=-\sum_{v_{l}=1,2,3,4} h_{k, k_{0} k_{2} k_{2}}\left(f_{v_{1} 1} f_{v_{2}} f_{v_{2} 2}+\right. \\
& \left.\quad f_{v_{2} 2} f_{v_{1} 1} f_{v_{22}}+J_{v_{2} 2} \bar{f}_{v_{2} 2} f_{v_{1} 1}\right) \\
& G_{12}{ }^{\prime}=G_{12}-2 \omega_{2}\left(\omega_{1}-2 \omega_{2}\right)^{-2} K_{1002} \bar{K}_{1002} \\
& G_{22}{ }^{\prime}=G_{22}-\left(3 \omega_{2}-4 \omega_{1}\right)\left(\omega_{1}-2 \omega_{2}\right)^{-2} K_{1002} K_{1002}
\end{align*}
$$

The relations /3/

$$
\begin{equation*}
K_{1002}=0, \quad G_{11}+4 G_{12}^{\prime}+4 G_{22}^{\prime} \neq 0 \tag{4.3}
\end{equation*}
$$

are the stability conditions for the corresponding rotations, and, moreover, the first one of them is necessary. To obtain the stability conditions for a concrete resonance rotation the coefficients must be computed for values of the parameter λ which are corresponding roots of the first of Eqs. (4.1).

In the case of fourth-order resonance the Hamiltonian (2.5) is transformed to

$$
\begin{align*}
& H=H_{2}^{\prime}+G_{0310} q_{1} p_{2}{ }^{3}+\bar{G}_{0310} p_{1} q_{2}{ }^{3}+G_{11} p_{1}{ }^{2} q_{1}{ }^{2}+2 G_{12} p_{1} p_{2} q_{2} q_{2}+ \tag{4.4}\\
& G_{22} p_{2}{ }^{2} q_{2}{ }^{2}+\ldots, G_{0310}=L_{0310}+2\left(2 \omega_{1}-\omega_{2}\right)^{-1} K_{1200} K_{0120}+ \\
& \left(\omega_{1}-2 \omega_{2}\right)^{-1} K_{0210}\left(K_{1110}-2 K_{0201}\right)+2 \omega_{1}\left(\omega_{1}+2 \omega_{2}\right)^{-1} \times \\
& \left(2 \omega_{1}-\omega_{2}\right)^{-1} K_{0120} K_{1200}+\omega_{1} \omega_{2}{ }^{-1}\left(\omega_{1}-2 \omega_{2}\right)^{-1} K_{0210} K_{1110}+ \\
& \omega_{2}{ }^{-1}\left(K_{0111} K_{0300}+K_{0210} K_{1110}\right)
\end{align*}
$$

When the two inequalities /3/

$$
\begin{equation*}
G_{0310} \neq 0, \quad \omega_{1}\left|G_{0310}\right| \geqslant\left|G_{11}+6 G_{12}+9 G_{22}\right| \tag{4.5}
\end{equation*}
$$

are fulfilled simultaneously the permanent rotations corresponding to fourth-order resonance will be unstable; in the case of opposite sign in the second inequality, they are stable. Stability is preserved if the right-hand side of the second of inequalities (4.5) is nonzero when $G_{03_{10}}=0$.

The coefficients occurring in formulas (4.3) and (4.5) as functions of the rigid body's parameters, for each fixed value of λ, are not identically zero. Consequently, conditions (4.3), (4.5) impose constraints only of the rigid body's mass distribution. Thus, the stability of all (except, possibly, a finite number) nonresonance rotations is determined by the first approximation. The stability of instability of the resonance rotations is determinedby coefficients (4.2) and (4.4) from conditions (4.3) and (4.5) and depends only on the rigid body's mass distribution.

The author thanks V.V. Rumiantsev for attention to the work.

REFERENCES

1. ARNOL'D V.I., Small denominators and stability problems in classical and celestial mechanics. Uspekhi Matem. Nauk, Vol.18, No.6, 1963.
2. MOSER J.K., Lectures on Hamiltonian Systems. Providence, RI. American Mathematical Society, 1968.
3. MARKEEV A.P., On stability of a canonical system with two degrees of freedom in the presence of resonance. PMM Vol.32, No.4, 1968.
4. GRAMMEL'R., Der Kreisel, seine Theorie und seine Anwendungen. Zweite, neubearbeitete Auflage. Erster Band: Die Theorie des Kreisels. Berlin-G8ttingen-Heidelberg, Springer-Verlag, 1950 (The Gyroscope, Its Theory and Application, Vol.1).
5. RUMIANTSEV V.V., Stability of permanent rotations of a heavy rigid body. PMM Vol.20, No.1, 1956.
6. RUBANOVSKII V.N., On bifurcations and stability of steady-state motions of systems with known first integrals. In: Problems in the Investigation of Stability and Motion Stabilization. Moscow, Vychisl. Tsentr Akad. Nauk SSSR, No. 1, 1975.
7. RUBANOVSKII V.N., On bifurcations and stability of permanent rotations of a rigid body in the case when its center of mass lies close to the principle inertia plane. In: Problems in the Investigation of Stability and Motion Stabilization. Moscow, Vychisl. Tsentr Akad. Nauk SSSR, 1982.
8. KOVALEV A.M. and SAVCHENKO A.Ia., Stability of uniform rotations of a rigid body about a principal axis. PMM Vol.39, No.4, 1975.
9. SERGEEV V.S., On the stability of the permanent rotations of a heavy solid body around a fixed point. PMM Vol.40, No.3, 1976.
10. CHUDNENKO A.N., On stability of the uniform rotations of a rigid body around the principal axis. PMM Vol.44, No. 2, 1980.
11. BELIKOV S.A., On the stability of permanent rotations of a rigid body around nonprincipal axis in a Newtonian force field. Izv. Akad. Nauk SSSR, Mekhan. Tverd. Tela, No.l, 1982.
12. BULGAKOV B.V., On normal coordinates. PMM Vol.10, No.2, 1946.
13. BIRKHOFF G.D., Dynamical Systems. Providence, RI, American Mathematical Society, 1966.
14. STÄUDE O., Über permanente Rotationsachen bei der Bewegung eines schweren körpers uneinen festen. Punkt. J. reine und angew. Mathe., B.113, 1894.

[^0]: *Prikl.Matem.Mekhan., Vol.47,No.3,pp.372-377,1983

